Yetter–Drinfeld Modules for Group-Cograded Hopf Quasigroups

نویسندگان

چکیده

Let H be a crossed group-cograded Hopf quasigroup. We first introduce the notion of p-Yetter–Drinfeld quasimodule over H. If antipode is bijective, we show that category YDQ(H) Yetter–Drinfeld quasimodules category, and subcategory YD(H) modules braided category.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Drinfel’d double for group-cograded multiplier Hopf algebras

Let G be any group and let K(G) denote the multiplier Hopf algebra of complex functions with finite support in G. The product in K(G) is pointwise. The comultiplication on K(G) is defined with values in the multiplier algebra M(K(G)⊗K(G)) by the formula (∆(f))(p, q) = f(pq) for all f ∈ K(G) and p, q ∈ G. In this paper we consider multiplier Hopf algebras B (over C) such that there is an embeddi...

متن کامل

Quasitriangular (G-cograded) multiplier Hopf algebras

We put the known results on the antipode of a usual quasitriangular Hopf algebra into the framework of multiplier Hopf algebras. We illustrate with examples which can not be obtained by using classical Hopf algebras. The focus of the present paper lies on the class of the so-called G-cograded multiplier Hopf algebras. By doing so, we bring the results of quasitriangular Hopf group-coalgebras (a...

متن کامل

F-quasigroups and Generalized Modules

In [3], we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the equational class of (pointed) F-quasigroups and the equational class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.

متن کامل

Two-sided (two-cosided) Hopf modules and Doi-Hopf modules for quasi-Hopf algebras

Let H be a finite dimensional quasi-Hopf algebra over a field k and A a right H-comodule algebra in the sense of [12]. We first show that on the k-vector space A⊗H∗ we can define an algebra structure, denoted by A # H∗, in the monoidal category of left H-modules (i.e. A # H∗ is an Hmodule algebra in the sense of [2]). Then we will prove that the category of two-sided (A,H)bimodules HM H A is is...

متن کامل

Doi-Hopf Modules over Weak Hopf Algebras

The theory of Doi-Hopf modules [7, 10] is generalized to Weak Hopf Algebras [1, 12, 2].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10091388